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Abstract

A structure having arbitrarily located conductor lines immersed in
complex anisotropic layered media presents one with a very general guided
wave problem. This problem is solved here by a rigorous formulation
technique characterizing each layer by a 6 x 6 constitutive tensor and
finding the appropriate Fourier transformed Green’s function matrix G.
From G a method of moments solution for the propagation characteristics
follows including propagation constant eigenvalues and field eigenvectors
at all spatial locations.

Introduction

Advances in materials technology are allowing the contiguous
growth of substances of considerably different properties. Present
integrated circuit processing techniques allow various combinations of
metals, dielectrics, and semiconductors to be layered together where these
materials may or may not be crystalline. We may expect to see in the
future the use of magnetic films [1] (metallic or non-metatlic), uniaxial
and biaxial dielectric films [2], ferrite films, magnetically induced semicon-
ductor gyroelectric films, and widely varying compositions of compound
films such as binary, ternary, and quaternary compounds. More creative
use of materials, especially for monolithic integrated circuits, will probably
occur in the future. Very complex materials with a combination of
birefringent gyroelectric, gyromagnetic, optical rotation, or other anisotro-
pic properties may be utilized. Furthermore the use of semiconductors,
dielectrics, or magneto-materials rotated off principal axes or convenient
axis coordinates can be envisioned.

Conventional methods either in direct or Fourier transformed space
using planar symmetry are not general enough to enable the interested
worker in the microwave or millimeter wave area to readily solve such
complex problems outlined above. Expeditious ways of solving field prob-
lems based on Maxwell’s equations, but avoiding gauge methods, are pos-
sible by using field matrix techniques. Matrix techniques using two field
components have been often used in the optics [3] and
microwave/electromagnetics [4] areas. As the medium becomes more
complex with less symmetry, the 2-component methods become increas-
ingly difficuit to implement. Lack of conductor line symmetry also compli-
cates the 2-component solution methods. A 4-component method has the
great advantage of enabling the use of only 1st order partial differential
equations. The 4-component technique also has the ability to allow direct
field matching at layer boundaries or interfaces [5].

Here a new formulation technique for solving the uniform (in the
z-direction) waveguide propagation problem is developed for layered media
possessing complex anisotropic properties. A 4-component method is util-
ized by adapting the 4 X 4 matrix approach in [S] to the Fourier transform
domain (FTD). Significant advantage is gained by working in the FTD
because Green’s function convolution integrals for determination of field
quantities due to current sources are converted into algebraic products.
The FTD process in addition treats asymmetrical conductor lines in the
same way as it treats symmetrical conductor lines. From the Green’s
function G the procedure for determining the propagation constant vy is
provided for the method of moments numerical technique assisted by
identical expansion and test basis functions (Galerkin approach).

Normal Mode Field Solution

Each layer has four eigenfunction field solution sets. Superposition
of these four normal mode sets of field components constitutes the actual
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total field solution obeying all boundary conditions (BC). Time harmonic,
plane guided wave solutions proportional to exp (jwt — yz) are assumed.
Insertion of the time harmonic nature of the plane wave into Maxwell’s
two_ curl equations creates the single sourceless matrix equation ir VL
Jjw Vg, in the FTD with tildes denoting FTD variables. Here

0 vy dldy

KRR .
Lym|--oq---4, Li= —y 0 — Jjky (1a,b)
= TR
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Fourier transformed electromagnetic fields ¥, and VR are ¥, = LB, 17?

E A A H), V=D, D, D, B. B B]" (superscript T-
transpose). One dlmenswnal Founer transform pair (f,f) is defined as

f(lq,y)-f Flepe” i, f(x,y)-—f Flk,)e b “dk,. (2a,b)
where f(x,y) is any real space variable. The medium of each layer can be

charactenzed by a single 6 X 6 constitutive tensor M in the FID
- M VL, where

|
a=|-50 3
|

€ and & are respectively the permittivity and permeability tensors. p and
p' tensors are responsible for optical activity. The equatlon which must be

solved for the normal mode field vectors is Ly ¥y = JwMVL It is then
converted into the following form:
L odb _ gy @

Jo dy
¢ is the four element column vector in the FTD having only interface
tangential field components, ¢ = [7, 75 Vi V7= |E, E, A, J7ALs
Translate y into the mth local layer shifted coordinate system y, =
y — I ky, where k; is the jth layer thickness and y = 0 corresponds to
an interface. Solutions to (4) in the y,, coordinate system can be written
as ¢ (y,) = exp(jk,y;)¢ (0). Putting this into (4) produces

[i‘y—’ 1- Rl¢,(0) -0, det lﬁ’- I- R] -0 (ab
@ [0}

Equation (5b) generates four k, eigenvalues k,. These k, values are
placed in (5a) to find the individual ¢,(0) normal mode vectors at y,, = 0.
The normal mode vector ¢*(y,,) at y, > 0 is found from ¢/(0) by multi-
plication with a 4 X 4 matrix characterizing the mth layer medium:

Here P™(y,,) = ‘I’”’(O)K"’(y,,,)\l""(O)“, K{,"- Buexp(jlgv’f’y,’,,), and ¥™(0) =
[6"(0) ¢5(0) ¢(0) $47(0)]. The superscript m in (6) emphasizes the
specialization of the eigenvector solution to the mth layer. ¥"(0) is a 4 x
4 matrix constructed out of the four normal mode vectors.

Half-Open Guided Wave Structure

Figure 1 shows the structure of the waveguiding layered
configuration. It has top and bottom perfectly conducting ground planes.
Layers are characterized by thicknesses &, there being a total of n + 1
layers. There are n interfaces between the layers, and a total of n interface
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Fig. 1 — Cross-section of guided wave structure containing
n + 1 layers of tlnckness hj, each characterized by a 6 x 6
constitutive tensor M There are n interface impulse surface
current line sources 7,,J The whole structure is bounded by
two perfectly conducting electric walls.

surface currents J7. These surface currents are line sources and may be
thought of in an abstract sense as representing perfectly conducting lines
positioned at the interfaces. Each layer is characterized by a single consti-
tutive tensor M, [see (3)] for the jth layer, there being a total of n + 1
tensors for all layers. The open structure to be analyzed is mathematically
and physically created by letting #,+; — . In the (n + 1)th layer only +y
outward propagating (or decaying) waves are desired in this limit, and this
fact is utilized later to find the Green’s function.

The normal mode or eigenvector solutions found must be superposi-
tioned to represent the actual (total) field solution in each layer, A™(y,,) =
=L e¢(4,). The mapping of A™(0) into A™(y,) which is essential to
the derivation below is found using (6):

A”‘(y,,,)-z eP"(y,) b (0) = P”'(y,,,)z €3 "(0) = P (yp)A™0). (1)

Four element column vector A™ is convenient to use for applying interface
or boundary conditions since the BC’s can be expressed solely in terms of
tangential field components. Electric field components A{" and A (&
and E") at the mth interface are continuous. Magnetic field components
A and Ay (A7 and A") are discontinuous. The BC’s at the interfaces in
matrix notation are A™(A}) = A™(h;) + [0 0 =J7 Jal7, where the
superscript 7 on the last vector means transpose.

A™(y.) in the mth layer is found by starting at y; = 0 and proceed-
ing through each layer using (7), accounting for field match or mismatch
along the way at successive interfaces by enlisting BC’s. The result of this
procedure is

m=1
A™(p,) = Frmpl(Q) + X Fmm=k [0 0 =J% JEIT, (8)
k=1
G- 3 P, ©)
Jmm=i+1

In (9), A/ = A, the jth layer thickness, except for the mth layer where
k) = y;,. F7'in (9) has a simple but elegant physical interpretation. It is a
mapping prefactor operator which takes the quantity to its right and pulls it
through / layers until it arrives at y,, in the mth layer. Applied to (8), the
operator with / = m takes the field vector A'(0) and draws it through all m
layers to the position y,, in the final mth layer. When / = m — k as in the

second operator acting on the kth discontinuity BC, the operator pulls the
BC sitting on the kth interface, which is on top of the kth layer and on the
bottom of the k& + 1 layer, through the remaining m — k layers.

A1(0) is unknown in (8) and needs to be determined so that A™(yn)
is uniquely specified. The first two components of A!(0) are
Af(0) = A} (0) = 0 due to the ground plane BC. A}(0) and A{(0) are
determined by using (8) to connect the ground plane at y = y{ = 0 and
the (n + 1)th side of the nth interface. Invoking (8),

n
A™H(0) = FrLart(Q)AL(0) + X FrHle*i-4(0) [0 O ~JE R 10)
k=1
Here one notes that F"tL#*1=k(Q) = Fn*=*(p.) for n 2 k 2 0. A"*1(0)
must be specified in order to solve (10) for the necessary A!(0) com-
ponents. First the normal modes comprising A”*'(0) need to be obtained.
This layer is isotropic with [see (3)] € = €pnil, fi = o, p=p'=0.
Note that ¥, = X&) aj (1—8;,) (1—8s)) V/D,, i=2, 5, with D, =
€,+11n+1. Defining a; and as$ as the vectors containing their respective ay,
j=20r5 j=1,24and 6, a;=[0 0 jyuw,r/o —kp,+1/w]” and
a5 - [- j7€n+1/‘0 kx€n+1/w 0 0] T
We find R to be

i jyko & )]
0 Y - lei' il (250 RS -
W€ 41 W€ht)
2 v k,
0 0 st + —2— L=
@ €n+1 W €ny
; 2
R szkx i — 1k, 0 0 an
@[ 41 @1
et + 2| - Lk 0 0
L ) ;l.,,+| @ty

Normal mode eigenvalues ky, are found by placing (11) into (5b). The
dispersion equation {kj — — k24 yP =0 results with k2, =
w041 This equation produces two distinct eigenvalues, or a total of
four normal modes, two being degenerate. Placing k, into (5a) and using
three of the four implied equations produces the eigenvectors ¢/*1(0).
We choose k,, i = 1 or 2, to be the distinct eigenvalues, and denote the
two different eigenvectors associated with each i by subscripts @ and .
Because the (n + 1)th layer is semi-infinite, only the outward propagating
(or decaying) wave in the +y direction is displayed below.

T
Wp +1k;'fl Jrks .
O = =52 00— 1]
n+1 Y n+1 Y
vk we k! T
1(0) = |- nil of . 12
ofs [ ki + o7 ki + 97 12

Notice that this degenerate normal mode solution consists of TM, and TE,
forms. Since the medium is isotropic, the solution could have been
resolved into other TM,, and TE, forms where n *= rectangular axis.

Equations (12) are used to construct the total field vector at
ir1 =0, A"1(0) = Apdfi (0) + Brudb(s(0). Equating this to (10)
creates a single vector equation comprised of four linear algebraic equa-
tions in four unknowns 4,4, B,+1, A$(0) and A{(0). A{(0) and A(0)
are solved as

4
AJO) =3, Cby; j=3, 4 (or x2), (13a)
=1
n—1
C= X CFymI + Fyrlg) — 8pd + 84Ty, (13b)
m=1
b= =1 - det 7, B, ~F ). 13¢)
D, = det [¢la 1 "Fg —1—74], (13d)
Bran = [Mﬁn) Y AT ¢f':fal,b)] (DR (14a)
T
Foo= [F/"(5',4) i F/fi'.«t)] ) (14b)
Foo=|Foo Fioe Foo Fige| (140

In (14) the component subscripts j,k,{ are cyclic, exclude i (notation 7),

and equal 1 through 4. Equation (13a) is inserted into (8) so that A™(y,,)

is determined. The E (#,) and E,(h,) electric field components are then

extracted out of the resulting (8) and related to all the interface surface
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current vectors (or surface current components). The identical procedure
is carried out for each interface set of electric field components, yielding a
total of n interface electric field component sets related to » interface
surface current vectors.

Dyadic G relates these two sets, U = GW, given by

Ef sutgnl 1 g A

B} R 7

. U R S A .
| | (- .

U= - ! ! [ ~=6w. a9

[ I |

.- B s o

Er | | | i

Ei’ Sn1|sn2|. | §m .:2

U and W are electric field component and interface current component
vectors of size 2n. Subscript indices on their field or current elements
above denote x(j = 1) or z(j = 2) components. Elements of U are u,
and of W, w;. G is a 2n X 2n matrix with each 2 X 2 $™ submatrix ele-
ment given by (i, j =1,2)

S = TP + Fis75», (16)
4
— 1R FRIp (b FR™ + by FE™), p=1,2, ..., n~1 (17a)
Tl'j"p - k=1
— 1) (b5 FE™ + b5 FA™),  p=n._ a7v)

In (16) the second term is dropped if p 2 m.

Propagation constant v is obtaining from (15), the starting point of a
Galerkin process, by using basis (expansion) and test functions.
Represent each element of the W vector as wy(k,y) = 2% gows (ke y)
where w; are the FTD basis functions which may be chosen to be a com-
plete set and g, are weight coefficients. Multiply rows 1 through 2» of w,
by respectively wd through wd,)y with s'=1, 2, ..., N, creating N,
equations for the ih row. The total number of equations will be
N = X% N, Integrate these equations over reciprocal k, space (drop the
1/27 factor) obtaining

Y= 5.0 (18)
Where xi gl I yiem
U S S R
1 | |
S, = oo : 19
| | |
o U
X n1] xQn2| | x@mQn
with Q= lgn g ... v, n qenn,, )7, and

X [ wiGmdk,  Yo= [ uwpde.  Q0ap)
Each XY, is the s'sth element of the XY submatrix S,. Using FTD
properties,

Ye(y)= f_: (e, Y)Y wh (e, y) dice = 277 f_: Gy whly)dx.  (21)

u(x,7) and wy(x,y) are the electric field and current distributions on the
interfaces. If one assumes perfect conductors on the interfaces, wy = 0
when & # 0 and the converse. This complementary nature of interface
fields and currents makes all Y, = 0. It is not necessary for field or
current symmetry with respect to the x-axis to hold in order to assure that
the left hand side of (21) is zero. The homogeneous set of equations in
(18) for the g, coefficients requires det (S,) = 0 for a solution to exist,
generating the characteristic dispersion equation in y to be-solved. It pro-
duces an infinite set of vy, eigenvalues, each a compiex number
y: = a; + jB;. «; is the attenuation constant and 8, the phase propagation
constant. Phase velocity. of the #th eigenvalue is given by v,; = w/8; where
w is the radian frequency. Electromagnetic tangential fields can be

3

obtained from (8) in any layer by inserting the calculated y;. The
transverse field components £’ and A" are [ A1 = laf all” A"
where af are transposes of the vectors discussed earlier.

For a closed structure A, is finite, and analysis similar to the open
structure is performed. A equation like (10) results but with y,4+1 =0
replaced by h,+; in the (n + Dth layer. Applying BC’s at y,1 = By
imposes Af*1'(h,+;) = Af#*'(h,41) = 0. Putting these BC’s into the
modified (10) yields an equation for the A'(0) components:

0 0 Bhy) Hh)IT=FHeto 0 G0 B O17
n
+3 prtiatklg g -F JEIT ()
k=1
Using only the first two rows of (22),

2 n
A @ =20 =3 3 I ij=1,22), (232)
J=1 k=1

If = (“1)MIFgshpt Fpgbydi-k— ppiloet ppibeyi=kyp, (23b)

where D, is the determinant of a 2 X 2 matrix with elements Fy"",
i, j=1, 2. Using (23), one finds that

S = Tj ~ CDFTEst, (24)
TPk = FRmik + Fpmi, (23)
Equations (24) and (25) are used to create the dyadic G as is (15).

Conclusion

The great value of the matrix method covered in this paper is that it
permits a systematic approach for solving most planar guided wave prob-
lems. Methodology is so general as to afford solutions to the most com-
plex anisotropic layered problems, as well as simpler problems. The start-
ing point of the method is the specification of constitutive macroscopic
tensor M, characterizing each layer i For example, iﬁn a relatively thick
semiconductor layer where the bulk M, can be used, M; would arise from
various microscopic transport effects such as impurity coulomb scattering,
alloy scattering, carrier-carrier scattering via coulomb and exchange
interactions, and intravalley and intervalley scattering. Converting the
above semiconductor transport effects from the microscopic to the macros-
copic level is well understood and regularly done. For layers which are
narrow and leads to separation of carrier energy levels in the transverse or
y-direction, this two dimensional effect may play a noticable role in altering
the scattering behavior through change of carrier quantum mechanical
wavefunctions ¥,.. If the layer walls are considered impenetrable to ¥,
then size effect, energy level splitting on the order of single particle
€, = (n hw/h,)*/2m* can be expected where #is Planck’s constant and m*
the carrier effective mass. The layer size effect discussed here is also
related to  similar two dimensional quantum mechanical phenomena,
namely quantum mechanical well creation and transport effects in metal-
insulator-semiconductor (MIS) structures and devices [6].
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