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Abstract

A structure having arbitrarily located conductor lines immersed in
complex anisotropic layered media presents one with a very general guided
wave problem. This problem is solved here by a rigorous formulation
technique characterizing each layer by a 6 x 6 constitutive tensor and
finding the appropriate F’ourier tmnsformed Green’s function matrix G.
From G a method of moments solution for the propagation characteristics
follows including propagation constant eigenvalues and field eigenvectors
at all spatial locations.

Introduction

Advances in materials technology are allowing the contiguous
growth of substances of considerably different properties. Present
integrated circuit processing techniques allow various combinations of
metals, dielectrics, and semiconductors to be layered together where these
materials may or may not be crystalline. We may expect to see in the
future the use of magnetic films [11 (metallic or non-metallic), uniaxial
and biaxial dielectric films [2], ferrite films, magnetically induced semicon-
ductor gyroelectric films, and widely varying compositions of compound
films such as binary, ternary, and quaternary compounds. More creative
use of materials, especially for monolithic integrated circuits, will probably
occur in the future. Very complex materials with a combination of
birefringent gyroelectric, gyromagnetic, optical rotation, or other anisotro-
pic properties may be utilized. Furthermore the use of semiconductors,
dielectrics, or magneto-materials rotsted off principal axes or convenient
axis coordinates can be erwisioned.

Conventional methods either in direct or Fourier transformed space
using planar symmetry are not general enough to enable the interested
worker in the microwave or millimeter wave area to readily solve such
complex problems outlim:d above. Expeditious ways of solving field prob-
lems based on Maxwell’s equations, but avoiding gauge methods, are Pos-
sible by using field matrix techniques. Matrix techniques using two field
components have been often used in the optics [31 and
microwavelelectromagnetics [4] areas. As the medium becomes more
comptex with less symmetry, the 2-component methods become increas-
ingly difficult to implement. Lack of conductor line symmetry also compli-
cates the 2-component solution methods. A 4-component method has the
great advantage of enabling the use of only 1st order partial differential
equations. The 4-component technique also has the ability to allow direct
field matching at layer boundaries or interfaces [5].

Here a new formulation technique for solving the uniform (in the
z-direction) waveguide propagation problem is developed for layered media
possessing complex anisotropic properties. A 4-component method is util-
ized by adapting the 4 x 4 matrix approach in [5] to the Fourier transform
domain (FTD). Significant advaotage is gained by working in the FTD
because Green’s function convolution integrals for determination of field
quantities due to current sources are converted into algebraic products.
The FTD process in addition treats asymmetrical conductor lines in the
same way as it treats symmetrical conductor lines. From the Green’s
function G the procedure for determining the propagation constant y is
provided for the method of moments numerical technique assisted by
identical expansion and test basis functions (Galerkln approach).

~)rmal Mode Field Solution

Each layer has four eigenfunction field solution sets. Superposition
of these four normal mode sets of field components constitutes the actual

total field solution obeying all boundary conditions (BC). Time harmonic,
plane guided wave solutions proportional to exp (-hat – yz) are assumed.
Insertion of the time harmonic nature of the plane wave into Ma}w~ll’s
two. curl equations creates the single source less matrix equation Lr V~ -
ju V.R,in the FTD with tildes denoting FTD variables. Here
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where jlx,y) is any real space variable. The medium of e~ch layer can be
charact~r!zed by a single 6 x 6 constitutive tensor Ad in the FTD
~R - MVL, where
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; and J are respectively the permittivity and permeability tensors. L$and
~‘ tensors are responsible for optical activity. The equatio~ yhich must be
solved for the normal mode field vectors is ~r ~~ - j@kfVL. It is then
converted into the following form:

:+$-R+. (4)

@ is the four element column ve$tor -in t~e ~TD hav!ng ~nly- int~rface
tangential field components, @- [ V1 Vj V, VJ T- [E. .EZ H. H,]!

Translate y into the mth local layer shifted coordinate system YL -
y – X,:ll h], where h, k the jth layer thickness and y -0 corresponds to
an interface. Solutions to (4) in the y~ coordinate system can be written
as + (yA) - exp (jkyyj)@ (0). putting this into (4) produces

1}~Z-R @,(0)-0,
[1

det&l_ R-o
(5a,b)

01 al

Equation (5b) generates four & eigenvalues &i. ‘flme ~,, Values are

placed in (5a) to find the individual +,(0) normal mode vectors at YL -0.
The normal mode vector +P(YL) at y: >0 is found from OF(O) by multi-
plication with a 4 x 4 matrix characterizing the mth layer medium:

@l’’fY;)- P“(YA)Or(o). (6)

Here Pm(y# - Wm(0)Km@J)Wm(O)-l, KY - tluexp~kfly~), and Y“(O) -
[MI(O) 4r(0) @f’(O) +.f’(0)]. The superscript m in (6) emphasizes the
specialization of the eigenvector solution to the mth layer. Win(0) is a 4 x
4 matrix constructed out of the four normal mode vectors.

Half-Ooen Guided Wave Structure

Figure 1 shows the structure of the waveguicfing layered
configuration. It has top and bottom perfectly conducting ground planes.
Layers are characterized by thicknesses hJ, there being a total of n + 1
layers. There are n interfaces between the layers, and a total of n interface
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Fig. 1 – Cross-section of guided wave structure containing
n + 1 layers of thickness hj, each chamcterized by a 6 x 6
constitutive tensor M,. There are n interface impulse surface
current lime sources Z,j. The whole structure is bounded by
two perfectly conducting electric walls.

surface currents y{. These surface currents are line sources and may be
thought of in an abstract sense as representing perfectly conducting lines
positioned at t~e interfaces. Each layer is characterized by a single consti-
tutive tensor M, [see (3)] for the fih layer, there being a total of n + 1
tensors for all layers. The open structure to be analyzed is mathematically
and physically created by letting h,+l + co. In the (rr + I)th Isyer only +Y

outward propagating (or decaying) waves are desired in this limit, and this
fact is utilized later to find the Green’s function.

The normal mode or eigenvector solutions found must be superposi-
tioned to represent the actual (total) field solution in each layer, A’”fjIA) -
Zf.l e,+~($~). The mapping of A“(0) into A%L) which is essential to
the derivation below is found using (6):

A“(Y;) - ~ e,Pm@;)@?’(0) - Pmfy~) ~ e,@~(0) - Pm(.v~)Am(0). (7)
i-1 f-1

Four element column vector Am is convenient to use for applying interface
or boundary conditions since the BC’S can be expressed solely in terms of
tsnge~tial field components. Electric field components A~ and Ar (~~
and E,”) at the rrrth inJerfsce are continuous. Magnetic field components
AY and A~ (~ and z) are discontinuous. The BC~s at-the interfaces in
matrix notation are Am(/rJ) - A%;) + [0 O -r ~]’, where the
superscript Ton the last vector means transpose.

Am(y;) in the mth layer is found by starting at y; -0 and proceed-
ing through each layer using (7), accounting for field match or mismatch
along the way at successive interfaces by enlisting BC’S. The result of this
procedure is

Ayljg - F~mA1(o) + ‘~1 Fn,”-k [0 o -g EIT (8)
k-1

F’”’(YA) -,-$,+, Wr;). (9)

In (9), h)’ - h,, the jth layer thickness, except for the rnth layer where
h; - YA. P’ in (9) has a simple but elegant physical interpretation. It is a
mapping prefactor operator which takes the quantity to its right and pulls it
through 1layers until it arrives at y; in the rnth layer. Applied to (8), the
operator with 1- m takes the field vector A 1(0) and draws it through all m
layers to the position y~ in the final rnth layer. When I = m - k as in the

second operator acting on the kth discontinuity BC, the operator pulls the
BC sitting on the kth interface, which is on top of the kth layer and on the
bottom of the k + 1 layer, through the remaining m - k layers.

A 1(0) is unknown in (8) and needs to be determined so that Am(YA)
is uniquely specified. The first two components of A1 (0) are
A}(0) - A~ (0) -0 due to the ground plane BC. A/(0) and A~ (0) are
determined by using (8) to connect the ground plane at Y - yr’ -0 and
the (n + l)th side of the ath interface. Invoking (8),

AII+l(0) _ J7.+1,.+l(())A1 (()) + ~ ~.+1~+1-k(r)) [1) 1) -~ &]T. (lo)
k-l

Here one notes that Fn+l,fl+]-k(0) = F“,”-k(ln) for n > k > 0. An+l (0)

must be specified in order to solve (10) for the necessary A 1(0) com-
ponents. First the normal modes comprising AZ+l (0) need to be obtained.
This layer is isotropic with [see (3)] 2- c~+IL ~ - &n+lL 6- )’ -0.

Note that fi - Xj-, a; (1 – 82,J) (1 – 8s,,) ~/Da, i -2, 5, with Da -

c.+uJ.+1. Defining a; and U; as the vectors containing theti respective a;,
i -2 or 5, j - 1, 2, 4 and 6, U1- [0 O jy#n+l/ro -&K”+J@]Tand

a; - [ – jyc”+,faz kxc.+J@ O O]’.
We find R to be
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Normal mode eigenvalues &, are found by placing (11) into (5b). The
dispersion equation {G? - [k~+l – &z + Y21)2-0 results with k;+l =
ai%m+l~.+l. This equation produces two distinct eigenvalues, or a total of
four normal modes, two being degenerate. Placing ~, into (5a) and using
three of the four implied equations produces the eigenvectors @f’+*(0).
We choose &,, i -1 or 2, to be the distinct eigenvahres, and denote the
two different eigenvectors associated with each i by subscripts a and b.
Because the (n + 1)th layer is semi-infinite, only the outward propagating

(or decaying) wave in the +Y direction is displayed below.

Notice that this degenerate normsl mode solution consists of TM, and TE,
forms. Since the medium k isotropic, the solution could have been
resolved into other TM, and TEn forms where n = rectangular axis.

Equations (12) are used to construct the total field vector at

Y;+ I -0, An+l (0) - A“+v$f# (0 + &+@f# (0). Equating this to (10)
creates a single vector equation comprised of four linear algebraic equa-
tions in four unknowns 4.+1, B.+], Ai (0) and Aj (0). Aj (0) and Ad(0)
are solved as

A}(O) - ~ C,bj,; j -3, 4 (or x,z), (13a)
1-1

“–l

C, - ~ (–F,Yn-mz + F,r-mz) - fi,3J: + 8,.&, (13b)
m-I

bj, = -(-1)1 & det [Sim &b -~,7_Jl, (13C)
o

DO - det [old @lb ‘~3 ‘~4], (13d)

?i(a,b) - l~fl~:~) +~~~b) ‘@d(o)’;
(14a)

[
E (3,4)- Fjlf,4)

1
F/#j, o Ffif, d, ‘, (14b)

[ I

T

F(3,4) - FM.4) EM,4) Wf, 4) FM, 4) . (14C)

In (14) the component subscripts j,k, 1 are cyctic, exclude i (notation ~),
and equal 1 through 4. Equation _(l 3a) is inserted into (8) so that AmfYL)
is determined. The ~.m(hm) and E, (hm) electric field components are then
extracted out of the resulting (8) and related to all the interface surface
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current vectors (or surface current components). The identical procedure
is csrried out for each interface set of electric field components, yielding a
total of n interface electric field component sets related to n interface
surface current vectors.

Dyadic G relates these two sets, U - GW, given by

u=

.s’1 ‘ S12 ‘ ... ‘ s’”
Ill

Ill.- . ..- ----- ----
.111.

I I 1.

.Ill.

-.. -1----1 -.--1---

Ill

s“’ IS”* I ““” I ‘s”’

=GFK (15)

fl and Ware electric field comtronent and interface current component
vectors of size 2n. Subscript indices on their field or current el~ments
above denote x(j- 1) or z(j= 2) components. Elements of Uare u,,
and of W, w,. G is a 2n x 2n mstrix with each 2 X 2 SW submatrix ele-
mentgivenby (i, j-1,2)

qQ- (
k=l

–(–l)J(&,5-,fiTm +b,,5-,fi?m), p-n.. (17b)

In (16) thesecond term isdroppedifp > m.

Propagation constant y ia obtaining from (15), the starting point of a
Galerkirr process, by using basis (expansion) and test functions.

Represent each element of the JVvector as wl(~,y)-~.~lq,,wo(k,,y)
where Wk are the FTD basis functions which may be chosen to be a com-
plete set and q~ are weight coefficients. Multiply rows 1 through 2nof w,
by respectively w~ through w?*.M with s’- 1, 2, . . . . N, creating N,
equations for the lh row. The total number of equations will be
N=X~21 N,. Integrate these equations over reciprocal k. space (drop the
l/2rr factor) obtaining

where

Sx=

x’ ‘
---

Y- SXQ,

X’* ‘ ... ; X1(2”)
----- ---- --

I 1.

1“---
X(2.)1

.1 I I .

I Il.

.1 .- ..1..--1 .-. .
ll#2n)21 . . . 1X(2. )(2.1

with Q - [qll qlz . . . qlN1 921 . . . tr(2.)N2nl T, ad

X+f_:W:Gw,&x, E$-f_-U,W~dkx..
Each XJ, is the s’sth element of the X“ submatrix S..

properties,

(18)

(19)

(20a,b)

Using FTD

Yk)(y) J: U,(kx, Y)wwj Y)dcx-2’27f_:u,(xjY)wi(x,Y)A. (21)

u,(x, Y) and WN(X,Y) are the electric field and current dktributions on the
interfaces. If one assumes perfect conductors on the interfaces, w,,, - 0
when u, # O and the converse. Thk complementary nature of interface
fields and currents makes all YO-O. It is not necessary for field or
current symmetry with respect to the x-axis to hold in order to assure that
the left hand side of (21) is zero. The homogeneous set of equations in
(18) for the q~ coefficients requires det(S,)-O for a solution to exist,

Eeneratirrg the characteristic dkpersion equationiny to bc%olved. It pro-
duces m infinite set of y, eigertvalues, each a CornPlex number
y(-a~+j~~. a~ istheattenuation constant andp, the phase propagation
constant. Phase velocity. of the theigenvalue isgiven byv~l-~lpf where
ra is the radian frequency. Electromagnetic tangential fields can be

,

obtained from (8) in any layer by -inserting the-calculated -yi. The
transverse field components ~~ and @’ are [~~ @’]T - [rrr a~]TAm
where a,~are transposes of thevectors dkcussed earlier.

Fora closed structure hn+l is finite, andanalysis similar to the open
structure is performed. A equation like (10) results but with .Yj+l -0
replaced by h.+, in the (n + l)th layer. Applying BC’S at y~+l - h.+1
imposes Af+l(/r.+i)- Ai’+l(hn+I) -O. Putting these BC’S into the
modified (10) yields an equation for the A1(0) components:

[0 o EL(h”+l)R,(hn+l)l~- F”+’,”+’[o o l%(o) FJ:(0)IT

+~Fn+l,n+l-k[O 0 _~ ~].

k-l

Using only the first two rows of (22),

(22)

(23a)

(23b)

where DC k the determinant of a 2 x 2 matrix with elements Ffi~i”+l,

i, j - 1, 2. Using (23), one finds that

S~- T~-(–l)JF~~ik, (24)

T~k - F,TmZ~+ F,?mZ$,, (25)

Equations (24) and (25) are used to create the dyadic Gas is (15).

Conclusion

The great value of thematrix method covered inthispaper istbatit
permits a systematic approach for solving most planar guided wave prob-
lems. Methodology is so general as to afford solutions to the most com-
plex anisotropic layered problems, as well as simpler problems. The srart-
ing poin~ of the method is the specification of constitutive macroscopic
tensor M, characterizing each layer i.a For example, @ a relatively thick
semiconductor layer where the bulk ~ can be used, M, would arise from
various microscopic transport effects such as impurity coulomb scattering,
alloy scattering, carrier-carrier scattering via coulomb and exchange
interactions, and intravalley and intervalley scattering. Converting the
above semiconductor transport effects from the microscopic to the macros-
copic level is well understood and regularly done. For layers which are
narrow and leads to separation of carrier energy levels in the transverse or
ydirection, this twotimensional effect mayplay anoticable role in altering
the scattering behavior through change of carrier quantum mechanical
wavefunctions V,. If the layer walls are considered impenetrable toYC,
then size effect, energy level splitting on the order of single particle
c.- (nh~/h")2/2m* can beexpected where fiisplanck's c0nstantandm*
the carrier effective mass. The layer size effect discussed here is also
related to similar two dimensional quantum mechanical phenomena,
namely quantum mechanical well creation and transport effects in metal-
insulator-semiconductor (MIS) structures and devices [61.
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